
Edited from slides for Operating
System Concepts by Silberschatz,
Galvin, Gagne

Lecture 16

Segmentation

Memory-management scheme that supports user view of memory
A program is a collection of segments.
A segment is a logical unit such as:
main program, procedure,
function, method,
object, local variables, global variables,
common block, stack,
symbol table, arrays

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

Segmentation Hardware
Logical address: <segment-number, offset>,
Segment table –

base –starting physical address
limit –length of the segment

Example of Segmentation

Virtual Memory

Virtual memory – separation of user logical memory from physical
memory.

Only part of the program needs to be in memory for execution
Logical address space can therefore be much larger than physical
address space
Allows address spaces to be shared by several processes
Allows for more efficient process creation

implemented via:
Demand paging
Demand segmentation

Virtual Memory That is Larger Than Physical Memory

⇒

Demand Paging

Bring a page into memory only when it is needed
Less I/O needed
Less memory needed
Faster response
More users

Page is needed ⇒ reference to it
invalid reference ⇒ abort
not-in-memory ⇒ bring to memory

Lazy swapper – never swaps a page into memory unless page will be
needed

Swapper that deals with pages is a pager

Valid-Invalid Bit

With each page table entry a valid–invalid bit is associated
(v ⇒ in-memory, i ⇒ not-in-memory)
Initially valid–invalid bit is set to i on all entries

During address translation, if valid–invalid bit in page table entry
is I ⇒ page fault

v
v
v
v
i

i
i

….

page table

Frame # valid-invalid bit

Page Table When Some Pages Are Not in Main Memory

Steps in Handling a Page Fault

Performance of Demand Paging

Page Fault Rate 0 ≤ p ≤ 1.0
if p = 0 no page faults
if p = 1, every reference is a fault

Effective Access Time (EAT)
EAT = (1 – p) x memory access

+ p (page fault overhead
+ swap page out
+ swap page in
+ restart overhead

)

Demand Paging Example

Memory access time = 200 nanoseconds

Average page-fault service time = 8 milliseconds

EAT = (1 – p) x 200 + p (8 milliseconds)
= (1 – p x 200 + p x 8,000,000
= 200 + p x 7,999,800

If one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.

This is a slowdown by a factor of 40!!

Copy-on-Write: VM Advantage

Copy-on-Write (COW) allows both parent and child processes to initially
share the same pages in memory

If either process modifies a shared page, only then is the page copied

COW allows more efficient process creation as only modified pages are
copied

After Process 1 Modifies Page C

What happens if there is no free frame?

Page replacement
find some page in memory, but not really in use, swap it
out
performance – want an algorithm which will result in
minimum number of page fault

Use modify (dirty) bit to reduce overhead of page transfers
– only modified pages are written to disk

Need For Page Replacement

Page Replacement

Page Replacement Algorithms

Minimize page-fault rate

Page Replacement Algorithms

Minimize page-fault rate

Page Replacement Algorithms

Minimize page-fault rate

FIFO Page Replacement

First-In-First-Out (FIFO) Algorithm
Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
3 frames (3 pages can be in memory at a time per process)

4 frames

First-In-First-Out (FIFO) Algorithm
Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
3 frames (3 pages can be in memory at a time per process)

4 frames

Belady’s Anomaly: more frames ⇒ more page faults

1 1 4 5

2 2 1 3 9 page faults

3 3 2 4

1 1 5 4

2 2 1 10 page faults5

3 3 2

44 3

FIFO Illustrating Belady’s Anomaly

Optimal Algorithm

Replace page that will not be used for longest period of time
4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Optimal Algorithm

Replace page that will not be used for longest period of time
4 frames example

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1 4

2 6 page faults

3

4 5

Optimal Page Replacement

Least Recently Used (LRU) Algorithm

Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Counter implementation
Every page entry has a counter; every time page is referenced
through this entry, copy the clock into the counter
When a page needs to be changed, look at the counters to
determine which are to change

1 11 51

2 22 22

5 43 45

3 34 34

LRU Page Replacement

LRU Algorithm (Cont.)

Stack implementation – keep a stack of page
numbers in a double link form:

Page referenced:
move it to the top
requires 6 pointers to be changed

No search for replacement

Use Of A Stack to Record The Most Recent Page References

Stack implementation – keep a
stack of page numbers in a
double link form:

Page referenced: move
to the top
No search for
replacement

LRU Approximation Algorithms

Reference bit
With each page associate a bit, initially = 0
When page is referenced bit set to 1
Replace the one which is 0 (if one exists)

We do not know the order, however
Second chance

Need reference bit
Clock replacement
If page to be replaced (in clock order) has reference bit = 1 then:

set reference bit 0
leave page in memory
replace next page (in clock order), subject to same rules

Second-Chance (clock) Page-Replacement Algorithm

See you next time

	Lecture 16
	Segmentation
	Logical View of Segmentation
	Segmentation Hardware
	Example of Segmentation
	Virtual Memory
	Virtual Memory That is Larger Than Physical Memory
	Demand Paging
	Valid-Invalid Bit
	Page Table When Some Pages Are Not in Main Memory
	Steps in Handling a Page Fault
	Performance of Demand Paging
	Demand Paging Example
	Copy-on-Write: VM Advantage
	After Process 1 Modifies Page C
	What happens if there is no free frame?
	Need For Page Replacement
	Page Replacement
	Page Replacement Algorithms
	Page Replacement Algorithms
	Page Replacement Algorithms
	FIFO Page Replacement
	First-In-First-Out (FIFO) Algorithm
	First-In-First-Out (FIFO) Algorithm
	FIFO Illustrating Belady’s Anomaly
	Optimal Algorithm
	Optimal Algorithm
	Optimal Page Replacement
	Least Recently Used (LRU) Algorithm
	LRU Page Replacement
	LRU Algorithm (Cont.)
	Use Of A Stack to Record The Most Recent Page References
	LRU Approximation Algorithms
	Second-Chance (clock) Page-Replacement Algorithm
	See you next time

